Research Projects
Connected Mobility
Research Projects
Simulation and Modelling of various 5G-Mechanisms within the context of connected mobility
The networking of vehicles with other road users or the infrastructure (Vehicle-to-Everything (V2X)) is one of the key technologies for autonomous driving and smart cities. The WLAN standard IEEE 802.11p developed for this purpose has already been the focus of research for a decade. So far, however, this communication technology has not been able to establish itself as a communication standard in the automotive industry. One possible reason for this is the non-existent stationary infrastructure…
Modeling and Simulation of Three-Dimensional Vehicular Ad Hoc Networks
The possibilities and challenges of vehicle-to-everything communication (V2X communication) have been being researched for several years already. A popular means allowing for sufficient flexibility in the investigations whilst maintaining a relatively high level of detail is the simulation of such networks, which must take both the traffic as well as communication aspects into account. The simulation framework Veins developed at the chair has already proven to be a successful tool.
A limitation…
Hybrid Co-Simulation Framework
Simulation is a decent method to study, evaluate, and validate upcoming technologies and algorithms. In order to generate realistic results, it is necessary to overcome different challenges. One of these challenges is the computational feasibility of holistic simulation scenarios, especially when it comes to large-scale setups. These scenarios may model a whole city or even an entire country. Besides performance problems, adequate modeling of real world scenarios often requires the combination of…
ViM: Simulator coupling and data enrichment
The increasing networking and digitalization in the mobility industry leads to ever more complex systems and large amounts of data. This offers opportunities and challenges and requires innovative methods for research, analysis, development and validation of new mobility technologies. ViM aims to develop a platform prototype for research purposes and for the development of innovative business services, which can serve for testing novel mobility services and novel driving functions on a technical…
Time Management and Real-Time Capabilities of Parallel and Distributed Simulation for the Virtual Development and Validation of Automated Driving Functions
Distributed simulations are often used to improve performance or to couple different simulators. This coupling is very important for the simulation of autonomous driving functions, because reusable simulation components can be created for the closer and wider environment of the vehicle, for the ego and other vehicles, for sensor technology, for procedures in the control units, for vehicle dynamics and for similar aspects and can be executed together in a simulation. Furthermore, such a distributed…
Evaluation methodology for automated driving using function simulation
Die Funktionssicherheit von Fahrerassistenzsystemen sowie automatisierter und vernetzter Funktionen ist vom Automobilhersteller in jeder denkbaren Verkehrssituation sicherzustellen. Im Entwicklungs- und Absicherungsprozess ist dazu eine erhebliche Zahl von Verkehrssituationen, sog. Szenarien, abzuprüfen. Dieser umfangreiche Prüfumfang lässt sich in Zukunft nur noch durch den massiven Einsatz von Computersimulation sinnvoll bewältigen. Um in diesen Simulationen eine entsprechende Validität und Pra…
Simulation and modeling based on collected real-world data
Die Funktionssicherheit von Fahrerassistenzsystemen sowie automatisierter und vernetzter Funktionen ist vom Automobilhersteller in jeder denkbaren Verkehrssituation sicherzustellen. Im Entwicklungs- und Absicherungsprozess ist dazu eine erhebliche Zahl von Verkehrssituationen, sog. Szenarien, abzuprüfen. Dieser umfangreiche Prüfumfang lässt sich in Zukunft eigentlich nur noch durch den massiven Einsatz von Computersimulation sinnvoll bewältigen. Um in diesen Simulationen eine entsprechende Validit…
Reliability design of multi-sensor systems
Modern driver assistance systems for self-driving cars often rely on data collected by different sensors to determine the necessary system decisions. To prevent system failures, different techniques can be used to enhance the reliability of such multi-sensor systems, e.g., aggregation, filtering, majority voting and other mechanisms for fault tolerance. As a consequence, erroneous sensing is rare but can be correlated in successive sensor readings (e.g., as error bursts) and also between sensors…
Heterogeneous vehicle networks for data transmission in the field
Vehicles are evolving to a mobile data platform. Besides mobility as their main purpose, the demand for entertainment, connectivity and current software is increasing. Besides installing updates in the workshop there is already today a mobile communication module built into the car, by which map updates, traffic information and entertainment applications are run. Mobile communication however depends on existing network coverage and can be limited in certain areas. Additionally a fee has to be paid…
A Methodology to Provoke Near-Crash-Situations to Validate Automated Vehicle Functions
Optimization of Multi-Access Edge Computing (MEC) for Network-Dependent Services
In the future, data exchange will no longer take place exclusively between the cloud (or a server in a data center) and a mobile device. Instead, communication between devices will be established directly on the basis of application relationships in order to realize immersive applications, automated driving or virtual reality. To this end, 5G and future network technologies are increasingly following the data-centric paradigm in their design, in which, among other things, the increasing relevance…