• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Computer Science 7
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Faculty of Engineering
  3. Department Computer Science
  • Deutsch
  • English
  • Campo
  • UnivIS
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Faculty of Engineering
  3. Department Computer Science

Computer Science 7

Navigation Navigation close
  • CS7
  • Research
  • Publications
  • Teaching
  • Cooperation Partners
  1. Home
  2. Research
  3. Connected Mobility
  4. Research Projects

Research Projects

In page navigation: Research
  • Quality-of-Service
    • Research Projects
    • Group Members
    • Publications
  • Connected Mobility
    • Research Projects
    • Group Members
    • Publications
  • Smart Energy
    • Research Projects
    • Group Members
    • Publications
  • Concluded Projects
    • ACOOWEE – Activity Oriented Programming of Wireless Sensor Networks
    • ALF: Autonomous Localization Framework
    • Analysis Methods for Non-Markovian Models
    • A⁵: Development Method for Driver Assistance Systems based on a Domain-Specific Language
    • BioNeting – Bio-inspired Networking
    • CoCar – Cooperative Cars
    • Concurrency in timed usage models for system testing in the automotive domain
    • Data Quality and the Control of Automotive Manufacturing
    • Decentralized organization of future energy systems based on the combination of blockchains and the cellular concept
    • Dienstgütegarantien für Ethernet in der industriellen Kommunikation
    • e-NUE: Co-Simulation of Electrified and Connected Vehicles
    • Energy System Analysis
    • Formal verification and validation of test methods for complex vehicle safety systems in virtual environments
    • GeTTeMo – Systematische Generierung von Testszenarien aus benutzungsorientierten Testmodellen
    • HISTORY – HIgh Speed neTwork mOnitoRing and analYsis
    • Hybrid Simulation of Intelligent Energy Systems
    • Integrated Modeling Platforms for Computer Infrastructures
    • MaTeLo (Markov Test Logic)
    • Mo.S.I.S. (Modular Software Engineering for Interoperative Systems)
    • Model support in design, test, and monitoring of image system architectures
    • Modeling of External and Internal Impact Factors on the Performance of Wireless Local Area Networks
    • monk-it – Efficient distributed monitoring, attack detection, and event correlation
    • p2p4wsn – Efficient Data Management in Mobile Sensor Networks using Peer-to-Peer Technologies
    • Pal-Grid: A Comprehensive Simulation Framework for the Palestinian Power Grid
    • Privacy in Vehicular Networks
    • ProHTA: Prospective Assessment of Healthcare Technologies
    • Q.E.D. (QoS Enhanced Development Using UML2.0 and TTCN-3)
    • Quality of Service of Networked Embedded Systems
    • Requirements oriented testing with Markov chain usage models in the automotive domain
    • ROSES – Robot Assisted Sensor Networks
    • Secure intelligent Mobility – Testarea Germany
    • Security and Quality of Service and Aspects in ZigBee-based Wireless Communication
    • Self-organization of SN-MRS systems
    • Sensitivity Analysis of Queueing Networks
    • SkyNet – Communicating Paragliders
    • Smart Grid Services
    • Smart Grid Solar
    • Software-in-the-Loop Simulation and Testing of Highly Dependable Distributed Automotive Applications
    • Support for inter-domain routing and data replication in virtual coordinate based networks
    • SWARM (Storage With Amply Redundant Megawatt)
    • Telematics Services in Hybrid Networks
    • Transmission of Safety-Relevant Sensor Data in Intra-Car Communication Systems
    • Veins 1.0 – Vehicles in Network Simulation
    • Web Cluster Laboratory
    • WinPEPSY-QNS – Performance Evaluation and Prediction System for Queueing Networks

Research Projects

Connected Mobility

Research Projects

Simulation and Modelling of various 5G-Mechanisms within the context of connected mobility

The networking of vehicles with other road users or the infrastructure (Vehicle-to-Everything (V2X)) is one of the key technologies for autonomous driving and smart cities. The WLAN standard IEEE 802.11p developed for this purpose has already been the focus of research for a decade. So far, however, this communication technology has not been able to establish itself as a communication standard in the automotive industry. One possible reason for this is the non-existent stationary infrastructure…

→ More information

Modeling and Simulation of Three-Dimensional Vehicular Ad Hoc Networks

The possibilities and challenges of vehicle-to-everything communication (V2X communication) have been being researched for several years already. A popular means allowing for sufficient flexibility in the investigations whilst maintaining a relatively high level of detail is the simulation of such networks, which must take both the traffic as well as communication aspects into account. The simulation framework Veins developed at the chair has already proven to be a successful tool.
A limitation…

→ More information

Hybrid Co-Simulation Framework

Simulation is a decent method to study, evaluate, and validate upcoming technologies and algorithms. In order to generate realistic results, it is necessary to overcome different challenges. One of these challenges is the computational feasibility of holistic simulation scenarios, especially when it comes to large-scale setups. These scenarios may model a whole city or even an entire country. Besides performance problems, adequate modeling of real world scenarios often requires the combination of…

→ More information

ViM: Simulator coupling and data enrichment

The increasing networking and digitalization in the mobility industry leads to ever more complex systems and large amounts of data. This offers opportunities and challenges and requires innovative methods for research, analysis, development and validation of new mobility technologies. ViM aims to develop a platform prototype for research purposes and for the development of innovative business services, which can serve for testing novel mobility services and novel driving functions on a technical…

→ More information

Time Management and Real-Time Capabilities of Parallel and Distributed Simulation for the Virtual Development and Validation of Automated Driving Functions

Distributed simulations are often used to improve performance or to couple different simulators. This coupling is very important for the simulation of autonomous driving functions, because reusable simulation components can be created for the closer and wider environment of the vehicle, for the ego and other vehicles, for sensor technology, for procedures in the control units, for vehicle dynamics and for similar aspects and can be executed together in a simulation. Furthermore, such a distributed…

→ More information

Evaluation methodology for automated driving using function simulation

Die Funktionssicherheit von Fahrerassistenzsystemen sowie automatisierter und vernetzter Funktionen ist vom Automobilhersteller in jeder denkbaren Verkehrssituation sicherzustellen.  Im Entwicklungs- und Absicherungsprozess ist dazu eine erhebliche Zahl  von Verkehrssituationen, sog. Szenarien, abzuprüfen.  Dieser umfangreiche Prüfumfang lässt sich in Zukunft nur noch durch den massiven Einsatz von Computersimulation sinnvoll bewältigen. Um in diesen Simulationen eine entsprechende Validität und Pra…

→ More information

Simulation and modeling based on collected real-world data

 Die Funktionssicherheit von Fahrerassistenzsystemen sowie automatisierter und vernetzter Funktionen ist vom Automobilhersteller in jeder denkbaren Verkehrssituation sicherzustellen.  Im Entwicklungs- und Absicherungsprozess ist dazu eine erhebliche Zahl  von Verkehrssituationen, sog. Szenarien, abzuprüfen.  Dieser umfangreiche Prüfumfang lässt sich in Zukunft eigentlich nur noch durch den massiven Einsatz von Computersimulation sinnvoll bewältigen. Um in diesen Simulationen eine entsprechende Validit…

→ More information

Reliability design of multi-sensor systems

Modern driver assistance systems for self-driving cars often rely on data collected by different sensors to determine the necessary system decisions. To prevent system failures, different techniques can be used to enhance the reliability of such multi-sensor systems, e.g., aggregation, filtering, majority voting and other mechanisms for fault tolerance. As a consequence, erroneous sensing is rare but can be correlated in successive sensor readings (e.g., as error bursts) and also between sensors…

→ More information

Heterogeneous vehicle networks for data transmission in the field

Vehicles are evolving to a mobile data platform. Besides mobility as their main purpose, the demand for entertainment, connectivity and current software is increasing. Besides installing updates in the workshop there is already today a mobile communication module built into the car, by which map updates, traffic information and entertainment applications are run. Mobile communication however depends on existing network coverage and can be limited in certain areas. Additionally a fee has to be paid…

→ More information

A Methodology to Provoke Near-Crash-Situations to Validate Automated Vehicle Functions

→ More information

Optimization of Multi-Access Edge Computing (MEC) for Network-Dependent Services

In the future, data exchange will no longer take place exclusively between the cloud (or a server in a data center) and a mobile device. Instead, communication between devices will be established directly on the basis of application relationships in order to realize immersive applications, automated driving or virtual reality. To this end, 5G and future network technologies are increasingly following the data-centric paradigm in their design, in which, among other things, the increasing relevance…

→ More information

Computer Science 7 (Computer Networks and Communication Systems)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Martensstr. 3
91058 Erlangen
  • Contact
  • Imprint
  • Privacy
  • Accessibility
  • RSS-FEED Colloquium
Up