• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Computer Science 7
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Faculty of Engineering
  3. Department Computer Science
  • Deutsch
  • English
  • Campo
  • UnivIS
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Faculty of Engineering
  3. Department Computer Science

Computer Science 7

Navigation Navigation close
  • CS7
  • Research
  • Publications
  • Teaching
  • Cooperation Partners
  1. Home
  2. Research
  3. Connected Mobility

Connected Mobility

In page navigation: Research
  • Quality-of-Service
    • Research Projects
    • Group Members
    • Publications
  • Connected Mobility
    • Research Projects
    • Group Members
    • Publications
  • Smart Energy
    • Research Projects
    • Group Members
    • Publications
  • Concluded Projects
    • ACOOWEE – Activity Oriented Programming of Wireless Sensor Networks
    • ALF: Autonomous Localization Framework
    • Analysis Methods for Non-Markovian Models
    • A⁵: Development Method for Driver Assistance Systems based on a Domain-Specific Language
    • BioNeting – Bio-inspired Networking
    • CoCar – Cooperative Cars
    • Concurrency in timed usage models for system testing in the automotive domain
    • Data Quality and the Control of Automotive Manufacturing
    • Decentralized organization of future energy systems based on the combination of blockchains and the cellular concept
    • Dienstgütegarantien für Ethernet in der industriellen Kommunikation
    • e-NUE: Co-Simulation of Electrified and Connected Vehicles
    • Energy System Analysis
    • Formal verification and validation of test methods for complex vehicle safety systems in virtual environments
    • GeTTeMo – Systematische Generierung von Testszenarien aus benutzungsorientierten Testmodellen
    • HISTORY – HIgh Speed neTwork mOnitoRing and analYsis
    • Hybrid Simulation of Intelligent Energy Systems
    • Integrated Modeling Platforms for Computer Infrastructures
    • MaTeLo (Markov Test Logic)
    • Mo.S.I.S. (Modular Software Engineering for Interoperative Systems)
    • Model support in design, test, and monitoring of image system architectures
    • Modeling of External and Internal Impact Factors on the Performance of Wireless Local Area Networks
    • monk-it – Efficient distributed monitoring, attack detection, and event correlation
    • p2p4wsn – Efficient Data Management in Mobile Sensor Networks using Peer-to-Peer Technologies
    • Pal-Grid: A Comprehensive Simulation Framework for the Palestinian Power Grid
    • Privacy in Vehicular Networks
    • ProHTA: Prospective Assessment of Healthcare Technologies
    • Q.E.D. (QoS Enhanced Development Using UML2.0 and TTCN-3)
    • Quality of Service of Networked Embedded Systems
    • Requirements oriented testing with Markov chain usage models in the automotive domain
    • ROSES – Robot Assisted Sensor Networks
    • Secure intelligent Mobility – Testarea Germany
    • Security and Quality of Service and Aspects in ZigBee-based Wireless Communication
    • Self-organization of SN-MRS systems
    • Sensitivity Analysis of Queueing Networks
    • SkyNet – Communicating Paragliders
    • Smart Grid Services
    • Smart Grid Solar
    • Software-in-the-Loop Simulation and Testing of Highly Dependable Distributed Automotive Applications
    • Support for inter-domain routing and data replication in virtual coordinate based networks
    • SWARM (Storage With Amply Redundant Megawatt)
    • Telematics Services in Hybrid Networks
    • Transmission of Safety-Relevant Sensor Data in Intra-Car Communication Systems
    • Veins 1.0 – Vehicles in Network Simulation
    • Web Cluster Laboratory
    • WinPEPSY-QNS – Performance Evaluation and Prediction System for Queueing Networks

Connected Mobility

Dr.-Ing. Anatoli Djanatliev

Head of Group Connected Mobility
  • Phone number: +49 9131 85-27099
  • Email: anatoli.djanatliev@fau.de

Current Members

Alexander Brummer, M. Sc.
Thomas Deinlein, M. Sc.
Matthias Frei, M. Sc.
Dusan Glavaski, M. Sc.
Moritz Gütlein, M. Sc.
Bernd Huber, M. Sc.
Francesco Montanari, M. Sc.
Michael Niebisch, M. Sc.
Minhao Qiu, M. Sc.
Christoph Stadler, M. Sc.

Connected Mobility

Connected Mobility

It is now common knowledge that vehicles will be highly connected in the future in order to offer innovative functions. It includes simple comfort applications, but also complex and real-time-critical security services such as cooperative driving actions and swarm intelligence. Autonomous driving defines further challenging requirements related to networking and security. In the context of connected mobility, a vehicle should be seen primarily as part of a larger ecosystem with other participants (e.g. people, cyclists, traffic light systems, buildings, etc.). All this supports to handle future mobility challenges and to find suitable solutions for available problems.

In our Connected Mobility group we are particularly concerned with V2X communication technologies (i.a., IEEE 802.11p, LTE, 5G) and network architectures (cloud, edge/fog, node computing). Another focus is the simulation and modeling of connected mobility systems. We are focusing on the analysis of protocols, propagation and antenna characteristics at lower layers as well as on the evaluation of future scenarios, innovative services, and mobility networks. Distributed and coupled multi-level simulation using HLA, behavior modeling, and the test of autonomous vehicles are further central research topics. The simulation environment VEINS, that combines road traffic simulation with network simulation, has been initially developed at our chair is currently extended in our projects.

There is a long-standing cooperation with the automotive industry, in particular through the joint PhD-program INI.FAU in cooperation with the Audi AG (http://www.ini.fau.de/) and through the Centre for Digitization in Bavaria. We coordinate the work package Simulation in the lead project of the ZD.B "Virtual Mobility World (ViM)".

Computer Science 7 (Computer Networks and Communication Systems)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Martensstr. 3
91058 Erlangen
  • Contact
  • Imprint
  • Privacy
  • Accessibility
  • RSS-FEED Colloquium
Up