Navigation

Connected Mobility

Connected Mobility

It is now common knowledge that vehicles will be highly connected in the future in order to offer innovative functions. It includes simple comfort applications, but also complex and real-time-critical security services such as cooperative driving actions and swarm intelligence. Autonomous driving defines further challenging requirements related to networking and security. In the context of connected mobility, a vehicle should be seen primarily as part of a larger ecosystem with other participants (e.g. people, cyclists, traffic light systems, buildings, etc.). All this supports to handle future mobility challenges and to find suitable solutions for available problems.

In our Connected Mobility group we are particularly concerned with V2X communication technologies (i.a., IEEE 802.11p, LTE, 5G) and network architectures (cloud, edge/fog, node computing). Another focus is the simulation and modeling of connected mobility systems. We are focusing on the analysis of protocols, propagation and antenna characteristics at lower layers as well as on the evaluation of future scenarios, innovative services, and mobility networks. Distributed and coupled multi-level simulation using HLA, behavior modeling, and the test of autonomous vehicles are further central research topics. The simulation environment VEINS, that combines road traffic simulation with network simulation, has been initially developed at our chair is currently extended in our projects.

There is a long-standing cooperation with the automotive industry, in particular through the joint PhD-program INI.FAU in cooperation with the Audi AG (http://www.ini.fau.de/) and through the Centre for Digitization in Bavaria. We coordinate the work package Simulation in the lead project of the ZD.B "Virtual Mobility World (ViM)".

Projects

The networking of vehicles with other road users or the infrastructure (Vehicle-to-Everything (V2X)) is one of the key technologies for autonomous driving and smart cities. The WLAN standard IEEE 802.11p developed for this purpose has already been the focus of research for a decade. So far, however, this communication technology has not been able to establish itself as a communication standard in the automotive industry. One possible reason for this is the non-existent stationary infrastructure (base…

More information

The possibilities and challenges of vehicle-to-vehicle and vehicle-to-infrastructure communication (V2X communication) have been being researched for several years already. A popular means allowing for sufficient flexibility in the investigations whilst maintaining a relatively high level of detail is the simulation of such networks, which must take both the traffic as well as communication aspects into account. The simulation framework Veins developed at the chair has already proven to be a successful…

More information

Simulation is a decent method to study, evaluate, and validate upcoming technologies and algorithms. In order to generate realistic results, it is necessary to overcome different challenges. One of these challenges is the computational feasibility of holistic simulation scenarios, especially when it comes to large-scale setups. These scenarios may model a whole city or even an entire country. Besides performance problems, adequate modeling of real world scenarios often requires the combination of…

More information

The increasing networking and digitalization in the mobility industry leads to ever more complex systems and large amounts of data. This offers opportunities and challenges and requires innovative methods for research, analysis, development and validation of new mobility technologies. ViM aims to develop a platform prototype for research purposes and for the development of innovative business services, which can serve for testing novel mobility services and novel driving functions on a technical…

More information

Distributed simulations are often used to improve performance or to couple different simulators. This coupling is very important for the simulation of autonomous driving functions, because reusable simulation components can be created for the closer and wider environment of the vehicle, for the ego and other vehicles, for sensor technology, for procedures in the control units, for vehicle dynamics and for similar aspects and can be executed together in a simulation. Furthermore, such a distributed…

More information

Die Funktionssicherheit von Fahrerassistenzsystemen sowie automatisierter und vernetzter Funktionen ist vom Automobilhersteller in jeder denkbaren Verkehrssituation sicherzustellen.  Im Entwicklungs- und Absicherungsprozess ist dazu eine erhebliche Zahl  von Verkehrssituationen, sog. Szenarien, abzuprüfen.  Dieser umfangreiche Prüfumfang lässt sich in Zukunft nur noch durch den massiven Einsatz von Computersimulation sinnvoll bewältigen. Um in diesen Simulationen eine entsprechende Validität und Pra…

More information

 Die Funktionssicherheit von Fahrerassistenzsystemen sowie automatisierter und vernetzter Funktionen ist vom Automobilhersteller in jeder denkbaren Verkehrssituation sicherzustellen.  Im Entwicklungs- und Absicherungsprozess ist dazu eine erhebliche Zahl  von Verkehrssituationen, sog. Szenarien, abzuprüfen.  Dieser umfangreiche Prüfumfang lässt sich in Zukunft eigentlich nur noch durch den massiven Einsatz von Computersimulation sinnvoll bewältigen. Um in diesen Simulationen eine entsprechende Validit…

More information

Publications of this research group