Jörg Deutschmann

Jörg Deutschmann, M.Sc.

Department of Computer Science
Chair of Computer Science 7 (Computer Networks and Communication Systems)

Room: Room 06.157
Martensstr. 3
91058 Erlangen

More Information









  • New protocols for faster Internet via satellite

    (Third Party Funds Single)

    Term: 2021-10-01 - 2024-09-30
    Funding source: Bundesministerium für Wirtschaft und Technologie (BMWi)
    In the QUICSAT project, the cooperation between the Friedrich-Alexander University (FAU) Erlangen-Nürnberg and ND SatCom GmbH has the common goal of improving Internet protocols and applications for geostationary satellite connections.

    The potential of new technologies (AQM, ECN, BBR and especially QUIC) will be examined. The ultimate goal is that Internet via satellite should perform as good as terrestrial Internet connections.

    The high latency of geostationary satellites, the current architecture of Internet protocols and the constantly increasing complexity of Internet applications (especially websites) are the reason why the performance of Internet via satellite is sometimes worse than the performance of terrestrial Internet connections, even if the data rates are comparable. Newer Quality of Service (QoS) mechanisms are currently not used in satellite communication. With QUIC there is also the risk that the performance of satellite internet will decrease due to the non-applicability of Performance Enhancing Proxies.

    The project makes a contribution to protocol research, standardization and reference implementations.

  • Satellite Internet Performance Measurements

    (Non-FAU Project)

    Term: 2021-01-01 - 2021-04-30
    Funding source: andere Förderorganisation
    URL: https://www.cs7.tf.fau.de/forschung/quality-of-service/forschungsprojekte/sat-internet-performance/

    This work evaluates the performance of different applications over different Internet access technologies, with focus on Internet access via satellite.

    The following Internet access technologies have been selected:

    • Geostationary satellites (Konnect/Eutelsat, skyDSL/Eutelsat, Bigblu/Eutelsat, Novostream/Astra Connect)
    • Satellite megaconstellations in low Earth orbit (Starlink)
    • Terrestrial systems as reference (o2 DSL, Congstar LTE)
  • Transparent Multichannel IPv6

    (Third Party Funds Single)

    Term: 2017-04-01 - 2020-12-31
    Funding source: Bundesministerium für Wirtschaft und Technologie (BMWi)
    Satellite communication is a way to provide broadband internet access all over the world. However, with geostationary satellites the propagation delay leads to very high delays in the magnitude of several hundred milliseconds. In order to improve the interactivity and responsiveness of communication systems, utilizing a second communication link can be highly beneficial.

    The Transparent Multichannel IPv6 (TMC-IPv6) Project aims to combine the advantages of multiple heterogeneous communication links. An illustrative example is the combination of a rural DSL connection with low data rate/low latency and a satellite connection with high data rate but high latency, which results in a user’s internet access with high data rate and low latency providing a better Quality of Experience (QoE).

    Satellite-based internet access from different operators is provided by our project partners in order to experience realistic satellite communication environment and test potential solutions. The outdoor unit (parabolic antenna) is mounted on the roof of the Wolfgang-Händler-Hochhaus.


Winter Term 2020/21

Winter Term 2018/19